
Introduction
Traffic scenario detection is important to guarantee functioning of automated driving
functions in different Operational Design Domain (ODD). Implementing scenario detection
through machine learning requires datasets. Since there is a lack of public datasets
available in this field, we thus decided to develop a system for synthetic scenario
generation (Fig. 1), featuring:

• Ability to generate a considerable number of samples as varied as possible (based on
real-world statistics)

• Ability to include environmental variability

• Usability (e.g., effectiveness, efficiency (parametric generation system) and ease of use)

For the simulation phase we use Car Learning to Act (CarLA), an open-source simulator
for automated driving research.

Synthetic Driving Scenario Generator
M. Cossu1, R. Berta1, L. Forneris1, F. Bellotti1

1Department of Naval, Electrical, Electronic, Telecommunications Engineering (DITEN), University of Genoa, 
Genoa, Italy

marianna.cossu@edu.unige.it

Parameter distributions
One of the most crucial aspects in generating realistic synthetic driving scenarios is the
creation of samples consisting of real-world-like actions. In order to do that it is required a
significant amount of high-quality data.

Our tool used multidimensional real-world parameters distributions obtained from the
processing of the ADScene database that contains more than 1 M km of drive recordings.

Thanks to scenario-specific multidimensional distributions, we understand, extract, and
parameterize all the key characteristics of each part of the scenarios (e.g., initial ego
speed, initial opponent speed, action duration, etc.).

In addition to the parametric variability, an environmental variability was introduced as well
(14 different weather and light conditions, initial location, different traffic intensities,
different models of vehicles each characterized by different set of colors, etc.)

Fig. 1 Overall system architecture

Class Scenario Descriptor
Class Scenario Descriptor defines and implements the desired scenario’s samples as
follows:

1. extracts a combination of parameters from the real-world multidimensional distributions
and defines the common parameters.

2. defines the step-by-step behavior of each actor in the scenario:

1. Protagonists and, if exists, adversary

2. non-protagonists, such as traffic component

3. initializes and implements the validator and the features that allow the tool to define
when a scenario is a failure or not (E.g., detect crashes, etc.)

4. informs the scenario runner to starts the simulation and the recording

We implemented 10 different classes: (1, 2) cut-in executed in front and behind the ego
vehicle, (3, 4) cut-out executed in front and behind the ego vehicle, (5) ego vehicle lane
change, (6) leading vehicle brake, (7) free ride recorded in front of the ego vehicle, (8) free
ride recorded behind the ego vehicle, (9) following ego vehicle and (10) following leading
vehicle. In Fig. 3 are shown some examples of possible scenarios.

Validator and Recorder
Validator performs the following steps:

1. Executes a real-time analysis of the simulated samples

2. Checks for erroneous situations such as crash, car leaving their roadway, etc.

3. If an abnormal behavior is detected, it informs the system to stop the simulation and
delete the sample

The validator helps to save generation time and avoids the need for:

• a manual human verification

• a validation of the correct creation of the dataset

Recorder starts the recording of each sample using different type of sensors (camera,
lidar radar, etc.)

Results
As an initial experiment, we generated a dataset with +800 samples for the ego lane
change, cut in front, cut in behind, cut out front and cut out behind scenarios, obtaining:

• a generation rate of 160 samples/h.

• an error sample rate 10 %

Different networks have been trained and tested with the generated dataset reaching high
values of test accuracy > 90%

Fig. 2 Examples of different weather and light conditions

Fig. 3 Examples of three different scenarios

Scenario Loader and Runner
Scenario Loader and Runner have the aim to:

• define which scenario the user wants to simulate running the desired class scenario
descriptor and the simulator

• load the multidimensional distributions of the scenario that the user wants to
reproduce


