

The Hi-Drive Driving Scenario Database

Marcel Sonntag, ika

Effects evaluation in the FESTA V

FESTA implementation plan adapted for

Hi-Drive

References:

v1.0 DRAFT for website.pdf

Hi-Drive Deliverable D4.5 (2023), https://www.hi-drive.eu/app/uploads/2023/08/Hi-Drive-SP4-D4.5-Effects-evaluation-methods-

Hi-Drive

Technical Evaluation – Research Questions

Effect on availability of AD

- To what extent do the enablers **extend** the AD **functionality**?
- To what extent do enablers enhance AD robustness?

Effect on driving behaviour

- What is the effect of AD and its enablers on ...
 - Safe, Comfortable, Efficient driving behaviour?
 - Interacting with other road users?
 - ...

We want to **evaluate AD and its enablers**, not just single implementations/systems \rightarrow Joint evaluation of the data

Challenge: Different operations in different environments and use cases with different enablers, different recorded signals with different quality

Hi-Drive

Concept of the Technical Evaluation

Impact Assessment – Research Questions

Impacts in different impact areas

- What is the impact of AD and its enablers on ...
 - Safety?
 - Energy demand, emissions, traffic efficiency?
 - Personal mobility, the transport system?

Results combined in socio-economic impact assessment

- What is the overall **socio-economic impact** (net welfare effect) of AD and its enablers?
- How does AD affect the **welfare** of different stakeholders in society and **social equity**?

We want to assess the impacts of AD and its enablers for the European Union

The assessment is **based on simulations**

 \rightarrow Operation data is used to calibrate the used models

Hi-Drive

Example: Safety Impact Assessment – RQ and Approaches

- 1. What is the impact of AD and its enablers on safety in different driving scenarios?
- 2. What are the **indirect** impacts of AD and its enablers on safety?
- 3. What is the impact of AD and its enablers on safety at European level?

1. Effect in the scenario

Hi-Drive

Input Data 1st Preparing Input for scaling-up 1st Preparing Assessment In-depth accident databases Assessment AD & ADAS Functions Road Data Crash Database 2nd Input from 2nd Scenario Crash Rate & Severity Scenario Frequency Traffic Scenario **Driving Scenario** (Motorway, Urban, Rural) Simulation (Motorway, Urban) (Motorway, Urban) description (Motorway, Urban, Rural) 3rd Execution of Scaling-up Tool 3rd Execution of Simulation Tool Scaling up (VTT In-house Tool) simulation (openPASS, esmini+Py, VISSIM & ika, LAB, TU Delft in-house etc.) Indirect Impact Direct impact 4th Analysis per 4th Evaluation of Crash Probability & Frequency of Input to (Mechanisms 1, 2 & 5) (Mech. 3, 4, 6, 7 & 8) Mechanism simulation **Driving Scenarios** scaling-up Severity IRF RQ 3: What are the indirect RQ 2: What is the impact of AD 5th Overall Deliverable RQ 1: What is the impact of AD and its **Deliverable** and its enablers on safety at impacts of AD and its 5th Results **D7.3** Results enablers on safety at European level? enablers on safety? **D7.3 European level?** 6th Plausibility Sensitivity Analysis Validation check Using the data *indirectly*

2. Scaling up

To allow a joint evaluation...

...we require harmonized processes

Harmonized data format for data provision

Common Data Format (CDF) as the mandatory data exchange format between Operation

Owners and Evaluation Partner

Harmonised evaluation toolchain

Collaborative development

Hi-Drive

• Consistent data evaluation across multiple operations

The Hi-Drive Common Data Format (CDF) as a Basis for the Joint Evaluation

Challenges for data harmonisation in Hi-Drive

- Diverse dedicated experiments
 - On-road tests
 - Test track studies
- Differences in system setup and data logging
- Additional signals from enablers
 - V2X
 - High precision positioning
- Enabler-focused research questions
 - → Dedicated performance indicators
 - → More complex driving scenarios

Data delivered by Pilot leaders

Data computed by Pilot data processing partners

The Common Data Format from L3Pilot is available via Github: *github.com/l3pilot/l3pilot-cdf*

Data Processing Flow

Scenario-based Evaluation of Automated Driving in Hi-Drive

- Segmenting the trip into instances of defined driving scenarios
- Deriving Performance Indicators per instance of a driving scenario

- Comparing Performance Indicators of Treatment with Baseline (Technical Evaluation)
- Storing the driving scenario instances in the DSDB and identify Edge Cases
- Using the DSDB e.g. for calibration of models for impact assessment

Hi-Drive

Detailed time series data required!

To allow the scenario-based evaluation...

...we require harmonized concepts

Harmonized driving scenario concept

• Hi-Drive driving scenario concept based on 6-layer model

Joint database

• Driving scenario database (DSDB)

The Hi-Drive Driving Scenario Concept

- Main **purpose** is to fulfil the needs of technical evaluation and impact assessment
- The **6-layer model** by Scholtes et al. (2021) was used as a reference
 - **Layer 4** (dynamic objects) defines the driving scenarios
 - The other layers define situational variables / tags to further specify the driving scenario instances

References:

Scholtes, M. et al. (2021). 6-Layer Model for a Structured Description and Categorization of Urban Traffic and Environment. IEEE Access, 9, 59131–59147. <u>https://doi.org/10.1109/access.2021.3072739</u>

Illustration taken from Weber, H. et al. (2023). Holistic Driving Scenario Concept for Urban Traffic. 2023 IEEE Intelligent Vehicles Symposium (IV), Anchorage, AK, USA, 2023, pp. 1-8. <u>https://doi.org/10.1109/IV55152.2023.10186385</u>

Hi Drive

The Hi-Drive Driving Scenario Structure Defined by Layer 4

Name	Label	Parent	Description	Pictogram
Approaching Longitudinally Moving Object	in_lane_appro aching_long_m oving	in_lane_app roaching	The ego vehicle is following a lane and is approaching an object that is driving in the same lane.	
Approaching Laterally Moving Object	in_lane_appro aching_lat_mo ving	in_lane_app roaching	The ego vehicle is following a lane and is approaching a laterally moving object at a road section that is not near a crossing.	
Cut-in with a Rear-End Conflict	in_lane_cut_i n_rear_end	in_lane_cut _in	The ego vehicle is following a lane and another object is doing a cut- in that results in a rear-end conflict.	

Initial collection of required driving scenarios for evaluation
→ Harmonization and structuring

First separation based on ego movement relative to infrastructure

→ Driving in Lane, Changing Lane, Crossing, Turning

Further separation based on detailed ego behaviour and interaction with other road users

ightarrow 36 specific driving scenarios

Full concept published on Zenodo: https://zenodo.org/record/8207762

Challenges Regarding DSDB

Challenges

- Data sharing
 - Anonymization of data / avoid being identifiable (avoid benchmarking and reengineering)
 - GDPR compliance
- Data availability
 - Many instances per driving scenario from different locations needed to have a representative DB
- Filtering
 - Allow easy usage of the high amount of data
- Interoperability to other solutions
- EC detection

Hi-Drive

- Data quality
- Amount of data

The data are provided via the DSDB...

...but there is more to use the DSDB for

Edge case analysis

Test case derivation

. . .

Collecting Driving Scenarios & Edge Cases from Experimental Data

- Apart from evaluating the effects of enablers, we collect driving scenarios in a dedicated database and investigate the data for **edge cases**
- We consider all operations as potentially delivering edge cases
- External data sources serve as additional data
 - Reusing L3Pilot data
 - FOT, NDS & Traffic observation

Edge Cases and Corner Cases

Hi-Drive Definition

 An Edge Case is a driving scenario instance that is rare but still requires specific design attention for it to be dealt with by the AV in a reasonable and safe way. The quantification of "rare" is relative, and generally refers to situations or conditions that will occur often enough in a full-scale deployed fleet to be a problem if not addressed appropriately.

Edge cases can appear due to extreme parameters:

- Edge Cases may arise from single parameters taking up values that are out of their expected range.
- **Corner Case: Multiple parameters** may take up values which are close to the boundary of their expected ranges creating a combination that was initially not expected or tested.

Param x

Challenge: No common understanding of what makes a driving scenario instance an edge case due to different understanding and driving functions

Hi-Drive 1st Summer School, SP7 DSDB

Driving Scenario and Edge Case Framework

Challenges:

- We probably will not achieve one understanding of Edge Cases
- Due to the nature of edge cases, we might find only a few or none
- → Data engineering toolchain will need to host **different approaches** on how to get to edge cases

...so, we still got some work to do

THANK YOU FOR YOUR KIND ATTENTION.

Marcel Sonntag, M.Sc. ika RWTH Aachen University <u>marcel.sonntag@ika.rwth-</u> aachen.de

www.Hi-Drive.eu Twitter@_HiDrive_ LinkedInHi-Drive

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006664.

