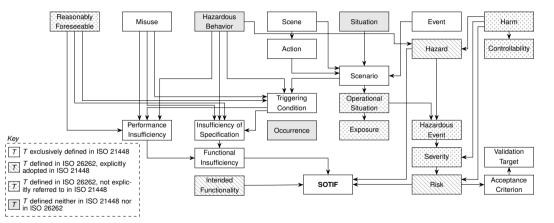
Hi-Drive - 1st Summer School, Porto Heli, Greece

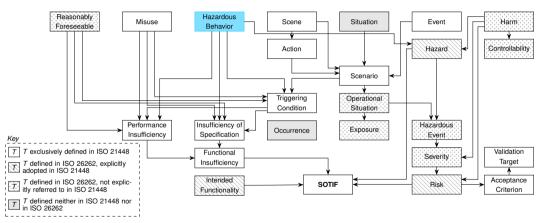
Towards a Quantitative SOTIF Validation of Automated Driving Systems

Lina Putze German Aerospace Center (DLR) e.V. Institute of Systems Engineering for Future Mobility

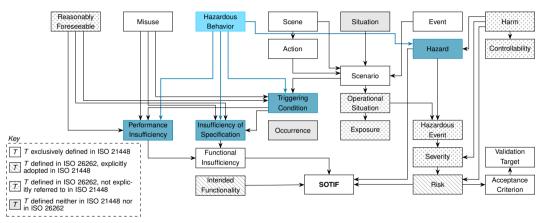
Lina Putze, Towards a Quantitative SOTIF Validation of Automated Driving Systems, 07.09.2023

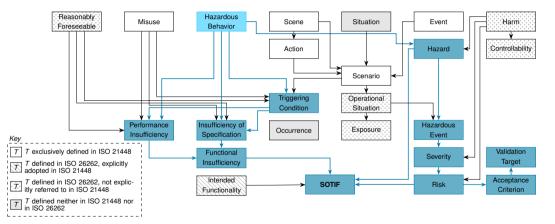
To answer this, we...

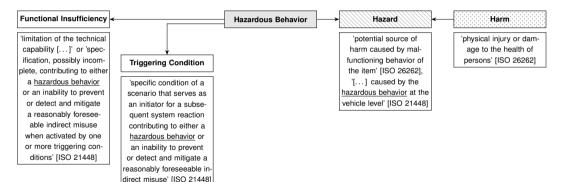

- (1) study and adjust the ISO 21448's terminological risk framework
- (2) examine the relevant normative and informative parts on <u>SOTIF validation</u> and provide constructive suggestions for improvement

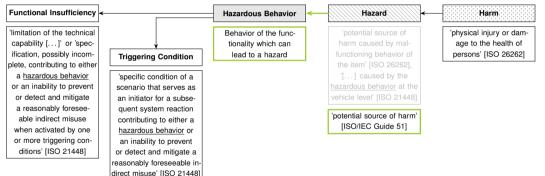

To answer this, we...

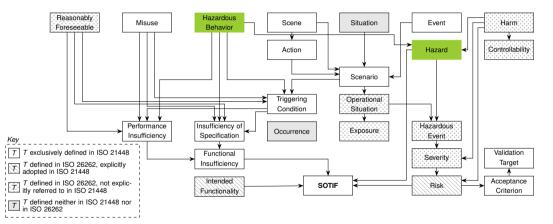
- (1) study and adjust the ISO 21448's terminological risk framework
- (2) examine the relevant normative and informative parts on <u>SOTIF validation</u> and provide constructive suggestions for improvement

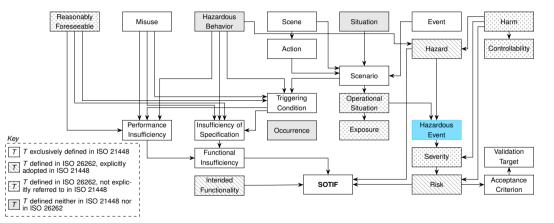


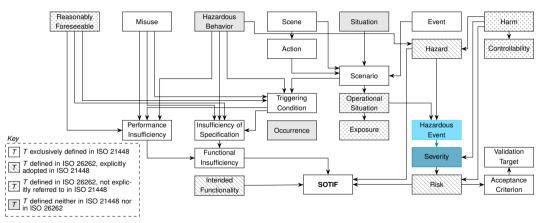


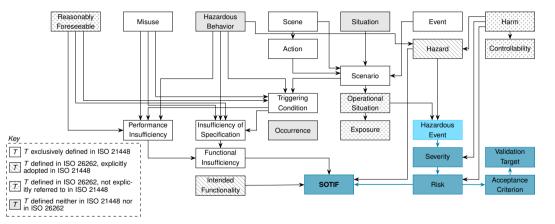










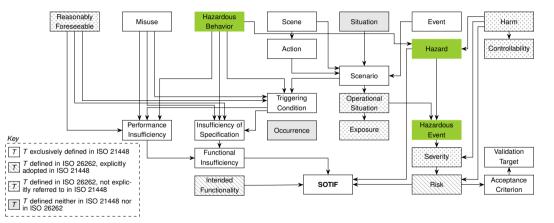


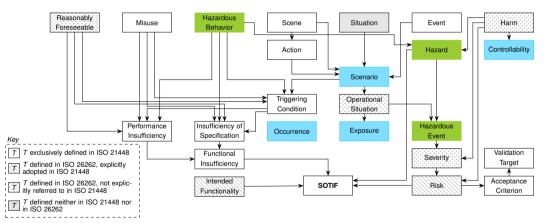
Lina Putze, Towards a Quantitative SOTIF Validation of Automated Driving Systems, 07.09.2023

6

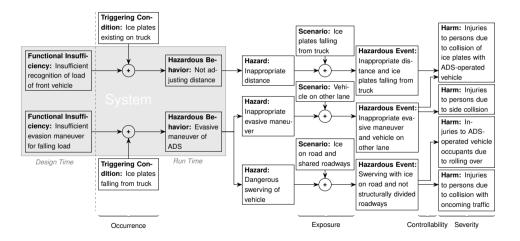
Hazardous Event

'combination of a <u>hazard</u> and an operational situation' [ISO 26262]




event that is a combination of a <u>hazard</u> and a <u>scenario</u> containing conditions in which the <u>hazard</u> can lead to <u>harm</u>

Lina Putze, Towards a Quantitative SOTIF Validation of Automated Driving Systems, 07.09.2023



Lina Putze, Towards a Quantitative SOTIF Validation of Automated Driving Systems, 07.09.2023

Example of the Terminological Risk Framework

To answer this, we...

- (1) study and adjust the ISO 21448's terminological risk framework
- (2) examine the relevant normative and informative parts on <u>SOTIF validation</u> and provide constructive suggestions for improvement

To answer this, we...

- (1) study and adjust the ISO 21448's terminological risk framework
- (2) examine the relevant normative and informative parts on <u>SOTIF validation</u> and provide constructive suggestions for improvement

Relevant clauses within the normative part:

10 Lina Putze, Towards a Quantitative SOTIF Validation of Automated Driving Systems, 07.09.2023

< □> < 图> < 至> りへ(?)

- Clause 6: Identification and evaluation of hazards
- Clause 7: Identification and evaluation of potential functional insufficiencies and potential triggering conditions

- Clause 6: Identification and evaluation of hazards
- Clause 7: Identification and evaluation of potential functional insufficiencies and potential triggering conditions
- Clause 9: Definition of the verification and validation strategy

- Clause 6: Identification and evaluation of hazards
- Clause 7: Identification and evaluation of potential functional insufficiencies and potential triggering conditions
- Clause 9: Definition of the verification and validation strategy

Remark: The normative part of the ISO 21448 is rather sparse with requirements compared to other standards

Clause 6: Identification and evaluation of hazards

no ASIL classification required unlike in the ISO 26262

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains
 - severity, controllability: treated as binary variables

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains
 - severity, controllability: treated as binary variables
 - exposure: not considered

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains
 - severity, controllability: treated as binary variables
 - exposure: not considered
 - X general reasoning why this simplification of the ASIL classification should be sufficient is missing

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains
 - severity, controllability: treated as binary variables
 - exposure: not considered
 - X general reasoning why this simplification of the ASIL classification should be sufficient is missing
- acceptance criteria must be formulated for SOTIF-related hazardous events

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains
 - severity, controllability: treated as binary variables
 - exposure: not considered
 - X general reasoning why this simplification of the ASIL classification should be sufficient is missing
- acceptance criteria must be formulated for SOTIF-related hazardous events
 - both qualitative <u>and</u> quantitative acceptance criteria are permitted

Clause 6: Identification and evaluation of hazards

- no ASIL classification required unlike in the ISO 26262
- idea of considering severity, exposure and controllability remains
 - severity, controllability: treated as binary variables
 - exposure: not considered
 - X general reasoning why this simplification of the ASIL classification should be sufficient is missing
- acceptance criteria must be formulated for SOTIF-related hazardous events
 - both qualitative <u>and</u> quantitative acceptance criteria are permitted
 - quantitative acceptance criteria are exclusively mentioned: GAMAB, PRB, ALARP, MEM

Clause 7: Identification and evaluation of potential functional insufficiencies and potential triggering conditions

Clause 7: Identification and evaluation of potential functional insufficiencies and potential triggering conditions

 systematic qualitative or quantitative analysis of potential functional insufficiencies and associated triggering conditions demanded

Clause 7: Identification and evaluation of potential functional insufficiencies and potential triggering conditions

- systematic qualitative or quantitative analysis of potential functional insufficiencies and associated triggering conditions demanded
- for scenarios containing identified triggering conditions SOTIF-achievability needs to be demonstrated

Clause 9: Definition of the verification and validation strategy

Clause 9: Definition of the verification and validation strategy

validation targets should be derived to argue that the acceptance criteria are fullfilled

Clause 9: Definition of the verification and validation strategy

- validation targets should be derived to argue that the acceptance criteria are fullfilled
- strategy to provide evidence that validation targets are met must be provided

Clause 9: Definition of the verification and validation strategy

- validation targets should be derived to argue that the acceptance criteria are fullfilled
- strategy to provide evidence that validation targets are met must be provided
- an example for deriving a validation target from a given quantitative acceptance criterion is given in Annex C.2 leading to the following decomposition

$$A_{H} = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$$

Clause 9: Definition of the verification and validation strategy

- validation targets should be derived to argue that the acceptance criteria are fullfilled
- strategy to provide evidence that validation targets are met must be provided
- an example for deriving a validation target from a given quantitative acceptance criterion is given in Annex C.2 leading to the following decomposition

$$A_H = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$$

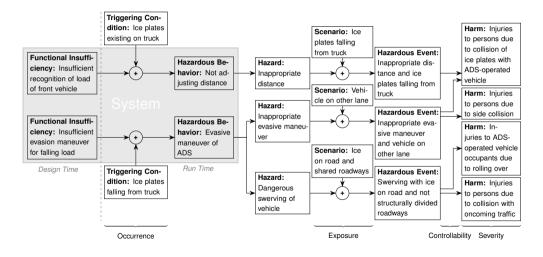
X deficient use of conditional probabilities

Clause 9: Definition of the verification and validation strategy

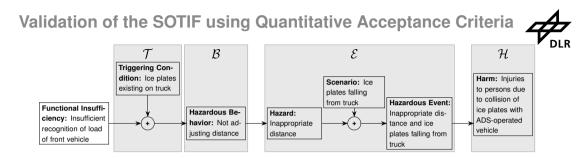
- validation targets should be derived to argue that the acceptance criteria are fullfilled
- strategy to provide evidence that validation targets are met must be provided
- an example for deriving a validation target from a given quantitative acceptance criterion is given in Annex C.2 leading to the following decomposition

$$A_H = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$$

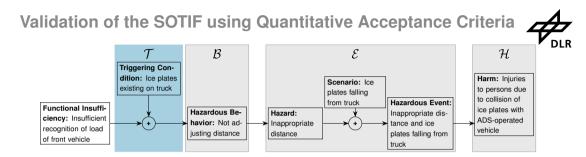
- X deficient use of conditional probabilities
- x probabilities are claimed to be known from field data

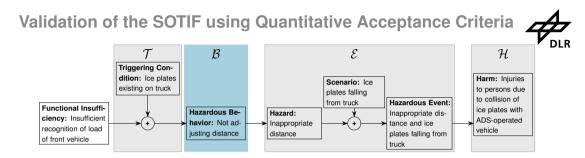

Clause 9: Definition of the verification and validation strategy

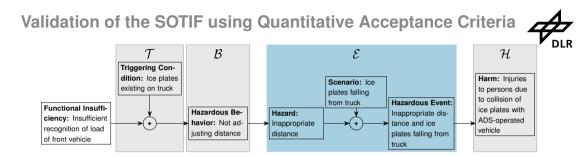
- validation targets should be derived to argue that the acceptance criteria are fullfilled
- strategy to provide evidence that validation targets are met must be provided
- an example for deriving a validation target from a given quantitative acceptance criterion is given in Annex C.2 leading to the following decomposition

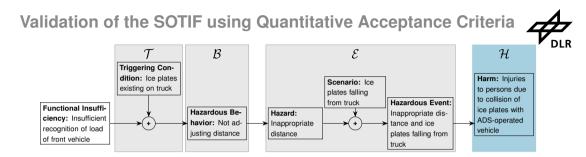

$$A_{H} = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$$

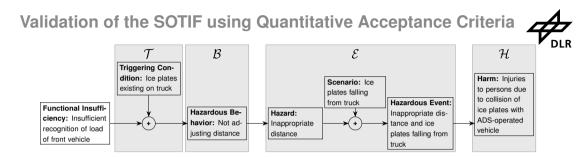
- X deficient use of conditional probabilities
- > probabilities are claimed to be known from field data
- X 1-to-1 relation between hazardous behavior and harm is implicitly assumed

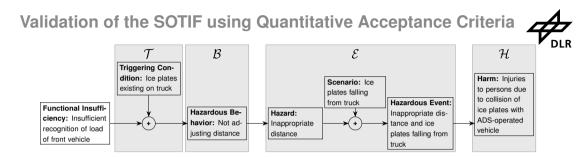

Validation of the SOTIF using Quantitative Acceptance Criteria

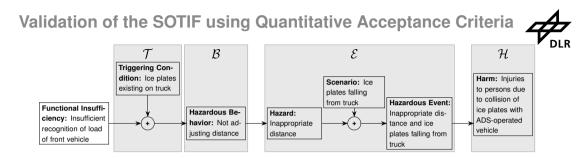

Validation of the SOTIF using Quantitative Acceptance Criteria τ В E \mathcal{H} Triggering Condition: Ice plates Harm: Injuries Scenario: Ice existing on truck to persons due plates falling to collision of Hazardous Event: from truck Functional Insuffiice plates with Hazardous Be-Hazard: Inappropriate disciency: Insufficient ADS-operated havior: Not adtance and ice ≻(+ Inappropriate ≻(+ recognition of load vehicle ->iusting distance distance plates falling from of front vehicle Scenario: Vehi-Harm: Injuries truck cle on other lane to persons due Hazard: Hazardous Event: to side collision Inappropriate Functional Insuffi-Hazardous Be-+ Inappropriate evaevasive maneu-Harm Inciency: Insufficient havior: Evasive sive maneuver iuries to ADS-(+ ver evasion maneuver maneuver of and vehicle on operated vehicle Scenario: Ice for falling load ADS other lane occupants due on road and to rolling over Triggering Conshared roadways Hazardous Event: Hazard: dition: Ice plates Swerving with ice Harm: Injuries Dangerous falling from truck on road and not to persons due swerving of structurally divided to collision with vehicle roadways oncoming traffic


 $P(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$

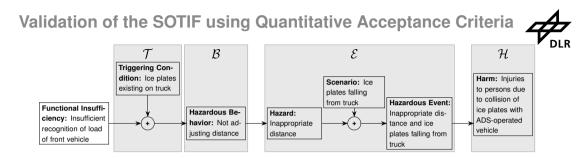

 $P(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$


$$\boldsymbol{P}(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} \boldsymbol{P}(\mathcal{T}) \boldsymbol{P}(\mathcal{B}|\mathcal{T}) \boldsymbol{P}(\mathcal{E}|\mathcal{B}, \mathcal{T}) \boldsymbol{P}(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$


$$P(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$

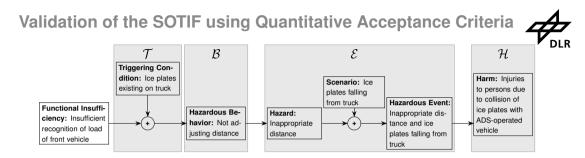

$$P(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$

$$\mathsf{P}(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} \mathsf{P}(\mathcal{T}) \mathsf{P}(\mathcal{B}|\mathcal{T}) \mathsf{P}(\mathcal{E}|\mathcal{B}, \mathcal{T}) \mathsf{P}(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$

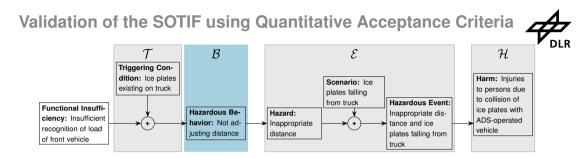

$$\mathsf{P}(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} \mathsf{P}(\mathcal{T}) \mathsf{P}(\mathcal{B}|\mathcal{T}) \mathsf{P}(\mathcal{E}|\mathcal{B}, \mathcal{T}) \mathsf{P}(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$

$$P(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$

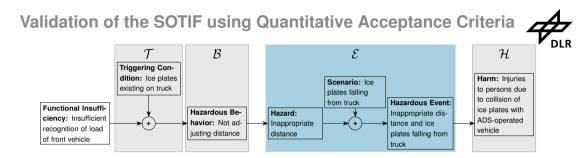
Probability of occurrence of a given harm H in combination with a severity level S:


$$P(\mathcal{H}, \mathcal{S}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T}) P(\mathcal{S}|\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$$

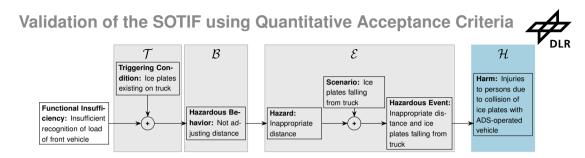
$$P(\mathcal{H}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T})$$


Probability of occurrence of a given harm H in combination with a severity level S:

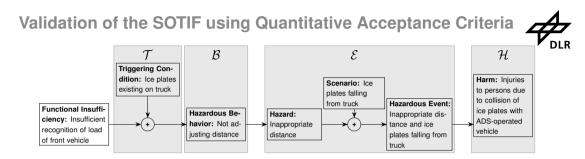
$$P(\mathcal{H}, \mathcal{S}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T}) P(\mathcal{S}|\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$$


$$A_H = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$$

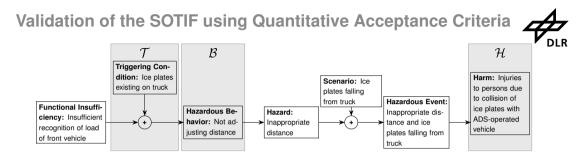
$$P(\mathcal{H}, \mathcal{S}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T}) P(\mathcal{S}|\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$$


 $A_{H} = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$

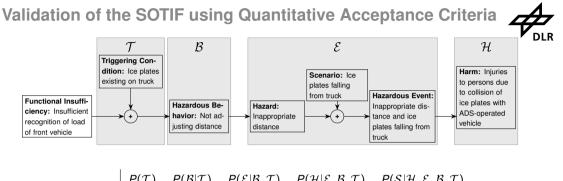
$$P(\mathcal{H}, \mathcal{S}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T}) P(\mathcal{S}|\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$$


 $A_{H} = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$

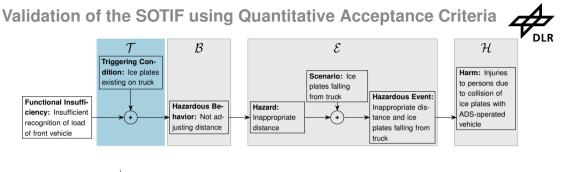
$$\mathsf{P}(\mathcal{H},\mathcal{S}) \leq \sum_{\mathcal{E},\mathcal{B},\mathcal{T}} \mathsf{P}(\mathcal{T}) \mathsf{P}(\mathcal{B}|\mathcal{T}) \mathsf{P}(\mathcal{E}|\mathcal{B},\mathcal{T}) \mathsf{P}(\mathcal{H}|\mathcal{E},\mathcal{B},\mathcal{T}) \mathsf{P}(\mathcal{S}|\mathcal{H},\mathcal{E},\mathcal{B},\mathcal{T})$$


 $A_{H} = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$

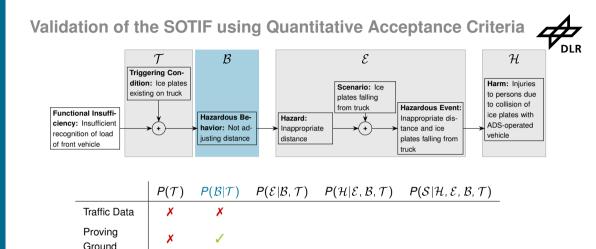
$$P(\mathcal{H}, \mathcal{S}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T}) P(\mathcal{S}|\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$$


$$A_H = R_{HB} \cdot P_{E|HB} \cdot P_{C|E} \cdot P_{S|C}$$

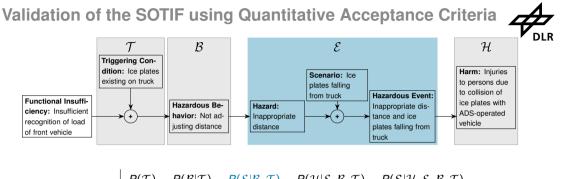
$$P(\mathcal{H}, \mathcal{S}) \leq \sum_{\mathcal{E}, \mathcal{B}, \mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{E}|\mathcal{B}, \mathcal{T}) P(\mathcal{H}|\mathcal{E}, \mathcal{B}, \mathcal{T}) P(\mathcal{S}|\mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$$



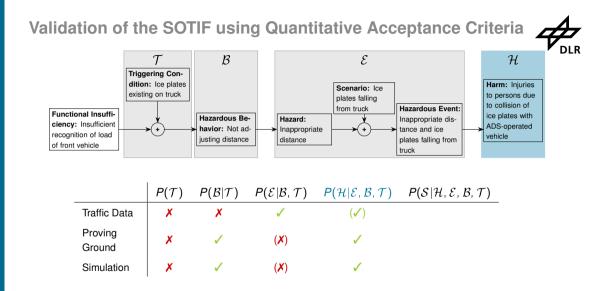
Other discretizations are also conceivable, for example:

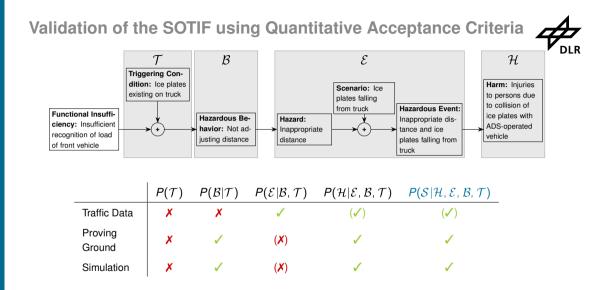

$$egin{aligned} & P(\mathcal{H}) \leq \sum_{\mathcal{B},\mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{H}|\mathcal{B},\mathcal{T}) \ & P(\mathcal{H},\mathcal{S}) \leq \sum_{\mathcal{B},\mathcal{T}} P(\mathcal{T}) P(\mathcal{B}|\mathcal{T}) P(\mathcal{H}|\mathcal{B},\mathcal{T}) P(\mathcal{S}|\mathcal{H},\mathcal{B},\mathcal{T}) \end{aligned}$$

	$P(\mathcal{T})$	$P(\mathcal{B} \mathcal{T})$	$P(\mathcal{E} \mathcal{B},\mathcal{T})$	$P(\mathcal{H} \mathcal{E},\mathcal{B},\mathcal{T})$	$P(\mathcal{S} \mathcal{H},\mathcal{E},\mathcal{B},\mathcal{T})$
Traffic Data					
Proving Ground					
Simulation					



	$P(\mathcal{T})$	$P(\mathcal{B} \mathcal{T})$	$P(\mathcal{E} \mathcal{B},\mathcal{T})$	$P(\mathcal{H} \mathcal{E},\mathcal{B},\mathcal{T})$	$P(\mathcal{S} \mathcal{H},\mathcal{E},\mathcal{B},\mathcal{T})$
Traffic Data	×				
Proving Ground	×				
Simulation	×				




Simulation

х

	P(7)	P(B T)	$P(\mathcal{E} \mathcal{B},\mathcal{T})$	$P(\mathcal{H} \mathcal{E},\mathcal{B},\mathcal{T})$	$P(\mathcal{S} \mathcal{H}, \mathcal{E}, \mathcal{B}, \mathcal{T})$	
Traffic Data	×	×	\checkmark			
Proving Ground	×	1	(🗡)			
Simulation	×	1	(🗙)			

Discussion

Discussion

Are there some general rules to derive a suitable decomposition of the risk?

Discussion

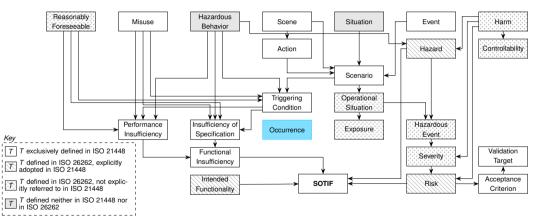
- Are there some general rules to derive a suitable decomposition of the risk?
- Does a scenario-based approach (sufficiently) reduce the validation effort?

Discussion

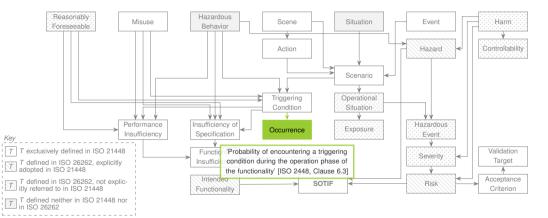
- Are there some general rules to derive a suitable decomposition of the risk?
- Does a scenario-based approach (sufficiently) reduce the validation effort?
- Is a quantitative risk assessment possible before employment?

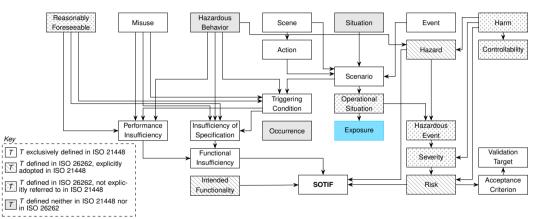
- Are there some general rules to derive a suitable decomposition of the risk?
- Does a scenario-based approach (sufficiently) reduce the validation effort?
- Is a quantitative risk assessment possible before employment?
- How to deal with updates even post employment?

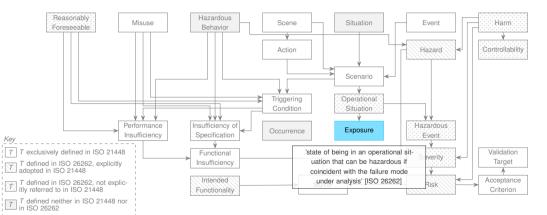
Thank you for the attention.

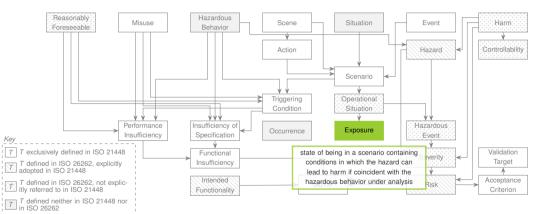

Contact:

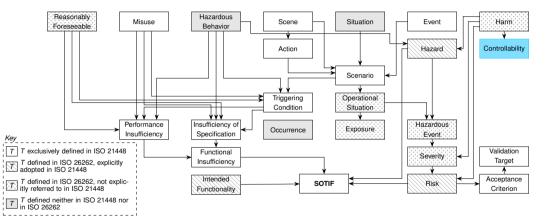
Lina Putze, M.Sc. German Aerospace Center (DLR) e.V. Institute of Systems Engineering for Future Mobility lina.putze@dlr.de

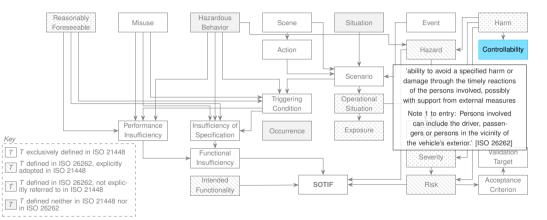

Definition Occurrence

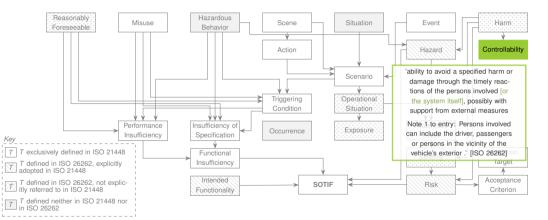

Definition Occurrence

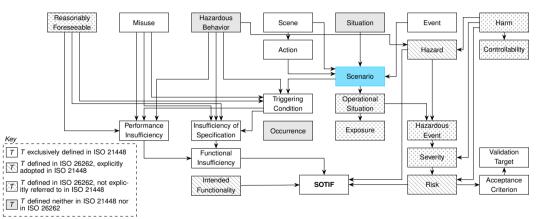

Definition Exposure

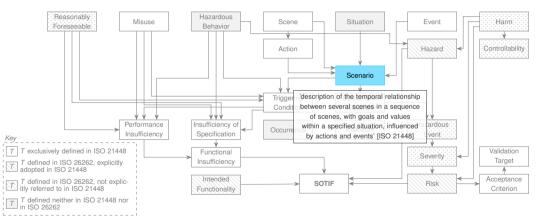

Definition Exposure

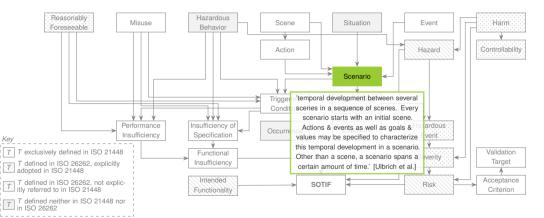

Definition Exposure

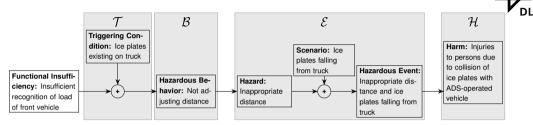

Definition Controllability


Definition Controllability

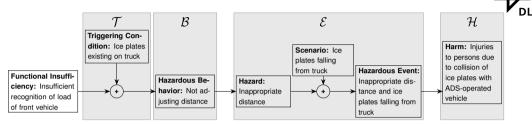

Definition Controllability


Definition Scenario


Definition Scenario



Definition Scenario



Derivation of Validation Targets

Suggestion given in the Annex C.2 of the ISO 21448

Derivation of Validation Targets

- Suggestion given in the Annex C.2 of the ISO 21448
 - Solving the factorization of the acceptance criterion A_H for R_{HB}:

$${m R}_{{m H}{B}} = rac{{m A}_{{m H}}}{{m P}_{{E}|{m H}{B}} \cdot {m P}_{{C}|{E}} \cdot {m P}_{{S}|{C}}}$$

• Estimation of a validation target τ that is sufficient for A_H with confidence level α :

$$au = -\ln(1-lpha)/R_{HB}$$

References

[ISO 21448] International Organization for Standardization, "ISO 21448: Road vehicles – Safety of the intended functionality," 2022.

[ISO 26262] International Organization for Standardization, "ISO 26262: Road vehicles – Functional safety," 2018.

[ISO/IEC Guide 51] International Organization for Standardization, "ISO/IEC Guide 51: Safety aspects — Guidelines for their inclusion in standards," 2014.

[Ulbrich et al.] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, "Defining and substantiating the terms scene, situation, and scenario for automated driving," in *2015 IEEE 18th international conference on intelligent transportation systems.* IEEE, 2015, pp. 982–988.